Improved Derandomization of BPP Using a Hitting Set Generator

نویسندگان

  • Oded Goldreich
  • Avi Wigderson
چکیده

A hitting-set generator is a deterministic algorithm which generates a set of strings that intersects every dense set recognizable by a small circuit. A polynomial time hitting-set generator readily implies $RP=P$. Andreev et. Al (ICALP’96 and JACM 1998) showed that if polynomial-time hitting-set generator in fact implies the much stronger conclusion $BPP=P$. We simplify and improve their (and later) constructions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simplified Derandomization of BPP Using a Hitting Set Generator

A hitting-set generator is a deterministic algorithm that generates a set of strings such that this set intersects every dense set that is recognizable by a small circuit. A polynomial time hitting-set generator readily implies RP = P , but it is not apparent what this implies for BPP. Nevertheless, Andreev et al. (ICALP’96, and JACM 1998) showed that a polynomial-time hitting-set generator imp...

متن کامل

Worst-Case Hardness Suffices for Derandomization: A New Method for Hardness-Randomness Trade-Offs

Up to now, the known derandomization methods for BPP have been derived assuming the existence of an ExP function that has a "hard" average-case circuit complexity. In this paper we instead present the first construction of a de-randomization method for BOP that relies on the existence of an EXP function that is hard only in the worst-case. The construction is based on a new method that departs ...

متن کامل

Improved Bounds for Quantified Derandomization of Constant-Depth Circuits and Polynomials

This work studies the question of quantified derandomization, which was introduced by Goldreich and Wigderson (STOC 2014). The generic quantified derandomization problem is the following: For a circuit class C and a parameter B = B(n), given a circuit C ∈ C with n input bits, decide whether C rejects all of its inputs, or accepts all but B(n) of its inputs. In the current work we consider three...

متن کامل

Towards efficient constructions of hitting sets that derandomize BPP

A subset H f0; 1g n is a Hitting Set for a class R of boolean functions with n inputs if, for any function f 2 R such that Pr (f = 1) (where 2 (0; 1) is some xed value), there exists an element ~ h 2 H such that f (~ h) = 1. The eecient construction of Hitting Sets for non trivial classes of boolean functions is a fundamental problem in the theory of derandomization. Our paper presents a new me...

متن کامل

In a World of P=BPP

We show that proving results such as BPP = P essentially necessitate the construction of suitable pseudorandom generators (i.e., generators that suffice for such derandomization results). In particular, the main incarnation of this equivalence refers to the standard notion of uniform derandomization and to the corresponding pseudorandom generators (i.e., the standard uniform notion of “canonica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999